Detecting and Fact-checking Misinformation using “Veracity Scanning Model”

14Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The expeditious flow of information over the web and its ease of convenience has increased the fear of the rampant spread of misinformation. This poses a health threat and an unprecedented issue to the world impacting people’s life. To cater to this problem, there is a need to detect misinformation. Recent techniques in this area focus on static models based on feature extraction and classification. However, data may change at different time intervals and the veracity of data needs to be checked as it gets updated. There is a lack of models in the literature that can handle incremental data, check the veracity of data and detect misinformation. To fill this gap, authors have proposed a novel Veracity Scanning Model (VSM) to detect misinformation in the healthcare domain by iteratively fact-checking the contents evolving over the period of time. In this approach, the healthcare web URLs are classified as legitimate or non-legitimate using sentiment analysis as a feature, document similarity measures to perform fact-checking of URLs, and incremental learning to handle the arrival of incremental data. The experimental results show that the Jaccard Distance measure has outperformed other techniques with an accuracy of 79.2% with Random Forest classifier while the Cosine similarity measure showed less accuracy of 60.4% with the Support Vector Machine classifier. Also, when implemented as an algorithm Euclidean distance showed an accuracy of 97.14% and 98.33% respectively for train and test data.

Cite

CITATION STYLE

APA

Barve, Y., Saini, J. R., Kotecha, K., & Gaikwad, H. (2022). Detecting and Fact-checking Misinformation using “Veracity Scanning Model.” International Journal of Advanced Computer Science and Applications, 13(2), 201–209. https://doi.org/10.14569/IJACSA.2022.0130225

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free