The three-dimensional velocity distribution of wide gap Taylor-Couette flow modelled by CFD

4Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

Cite

CITATION STYLE

APA

Adebayo, D. S., & Rona, A. (2016). The three-dimensional velocity distribution of wide gap Taylor-Couette flow modelled by CFD. International Journal of Rotating Machinery, 2016. https://doi.org/10.1155/2016/8584067

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free