Our work demonstrated a dynamic yet stable microbial ecosystem during cheese production using an endogenous starter culture. This was observed across several distinct producers and was marked by genomic evidence of continued phage-bacterium interactions, such as the presence of bacterial defense mechanisms. Microbial starter cultures are used in the production of many cheeses around the world, such as Parmigiano-Reggiano, in Italy, Époisses, in France, and Canastra, in Brazil, providing many of the unique features of these cheeses. Bacteriophages (phages) are ubiquitous and well known to modulate the structure of bacterial communities, and recent data indicate that cheeses contain a high abundance of naturally occurring phages. Here, we analyze the viral and bacterial metagenomes of Canastra cheese: a traditional artisanal Brazilian cheese produced using an endogenous starter culture and raw milk. Over 1,200 viral operational taxonomic units were recovered using both isolated viral-like particles and complete metagenomic DNA. Common viral families identified included Siphoviridae and Myoviridae , with 40% of putative phage genomes unidentified at the family level of classification. We observed very high phage diversity, which varied greatly across different cheese producers, with 28% of phage genomes detected in only one producer. Several metagenome-assembled genomes were recovered for lactic acid-producing bacteria, as well as nonstarter bacterial species, and we identified several phage-bacterium interactions, at the strain level of resolution, varying across distinct cheese producers. We postulate that at least one bacterial strain detected could be endogenous and unique to the Canastra cheese-producing region in Brazil and that its growth seems to be modulated by autochthonous phages present in this artisanal production system. This phage-host relationship is likely to influence the fermentation dynamics and ultimately the sensorial profile of these cheeses, with implications for other similar cheese production systems around the world. IMPORTANCE Our work demonstrated a dynamic yet stable microbial ecosystem during cheese production using an endogenous starter culture. This was observed across several distinct producers and was marked by genomic evidence of continued phage-bacterium interactions, such as the presence of bacterial defense mechanisms. Furthermore, we provide evidence of unique microbial signatures for each individual cheese producer studied in the region, a fact that may have profound consequences on product traceability. This was the first effort to describe and understand the bacteriophage composition and ecological dynamics within the Brazilian Canastra cheese production system. The study of this prototypical backslopping production system provides a solid background for further mechanistic studies of the production of many cheeses around the world.
CITATION STYLE
Queiroz, L. L., Lacorte, G. A., Isidorio, W. R., Landgraf, M., de Melo Franco, B. D. G., Pinto, U. M., & Hoffmann, C. (2023). High Level of Interaction between Phages and Bacteria in an Artisanal Raw Milk Cheese Microbial Community. MSystems, 8(1). https://doi.org/10.1128/msystems.00564-22
Mendeley helps you to discover research relevant for your work.