Down to the root of vegetated soil: challenges and the state-of-the-art

0Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Vegetated soil plays an essential role in confronting climate change. Soil, together with its ecosystem, stores vast amounts of carbon; it is also the construction material most widely used for the built environment. The expected impacts of climate change, such as extreme wetting-drying cycles, pose an urgent need to understand the interplay between soil deformation, root growth, and water/solute uptake. The key to this challenge lies in the extension of unsaturated soil mechanics to incorporate bio-hydrological processes, such as root growth and water uptake. In this paper, we first provide an overview of the state-of-the-art knowledge of root-zone mechanics and bio-hydrology. We identify the main knowledge gaps and suggest an integrated, bottom-to-top approach to develop a multidisciplinary understanding of soil-water-root interaction. We explain how emerging experimental and numerical methods can be used to study rooted soil under wetting–drying cycles. We focus on the biophysical processes at the scale of plant roots, soil particles and their interfaces, and discuss potential up-scaling to the continuum/field scale. An outlook on possible further research involves effects of temperature and microbial activities.

Cite

CITATION STYLE

APA

Cheng, H., Anselmucci, F. A. R., Fan, X., Zeng, Y., Luding, S., & Magnanimo, V. (2022, January 1). Down to the root of vegetated soil: challenges and the state-of-the-art. Papers in Physics. Instituto de Fisica de Liquidos y Sistemas Biologicos. https://doi.org/10.4279/pip.140014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free