Earth’s gravity from space

4Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Satellite gravimetry began with the launch of the satellites Sputnik 1 and 2 in 1957. During the following 43 years, more and more details were discovered and the models of the Earth’s gravity could be refined. Methods improved and more and more satellite orbits and ground stations were added in the analysis, employing more advanced and precise measuring techniques. A new era started with the dedicated gravimetry missions CHAMP (2000–2010), GRACE (2002–2017), and GOCE (2009–2013). The methods of satellite-to-satellite tracking and satellite gradiometry resulted in a substantial improvement of our knowledge of the Earth’s gravity field in terms of accuracy and its spatial and temporal variations. There are three basic ways of using gravity and geoid models in Earth sciences and geodesy. First, in solid Earth physics, the highs and lows of the field are investigated in comparison with an idealized Earth, e.g., a hydrostatic equilibrium figure. In particular, in South America, Africa, Himalaya and Antarctica the gravity field is known much better now, due to GOCE and lead to an improved understanding of the continental crust and lithosphere. Second, in oceanography, the geoid serves as surface in equilibrium, a hypothetical ocean at rest. The ocean topography is the deviation of the actual ocean surface, measured by satellite altimetry, from this reference. The ocean topography serves as a new and independent input to ocean circulation modeling and leads to an improved understanding of ocean transport of mass, heat, and nutrients. Similarly, geodetic heights of the land surface will soon be referred to the geoid, leading to globally consistent heights and enabling the removal of existent systematic deformations and offsets of national and continental height systems. Third, the GRACE time series of monthly gravity models, reflecting seasonal, inter-annual and long-term gravity changes, became one of the most valuable data sources of climate change studies.

Cite

CITATION STYLE

APA

Rummel, R. (2020). Earth’s gravity from space. Rendiconti Lincei, 31, 3–13. https://doi.org/10.1007/s12210-020-00889-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free