Molecular Capture of Mycobacterium tuberculosis Genomes Directly from Clinical Samples: A Potential Backup Approach for Epidemiological and Drug Susceptibility Inferences

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The application of whole genome sequencing of Mycobacterium tuberculosis directly on clinical samples has been investigated as a means to avoid the time-consuming need for culture isolation that can lead to a potential prolonged suboptimal antibiotic treatment. We aimed to provide a proof-of-concept regarding the application of the molecular capture of M. tuberculosis genomes directly from positive sputum samples as an approach for epidemiological and drug susceptibility predictions. Smear-positive sputum samples (n = 100) were subjected to the SureSelectXT HS Target Enrichment protocol (Agilent Technologies, Santa Clara, CA, USA) and whole-genome sequencing analysis. A higher number of reads on target were obtained for higher smear grades samples (i.e., 3+ followed by 2+). Moreover, 37 out of 100 samples showed ≥90% of the reference genome covered with at least 10-fold depth of coverage (27, 9, and 1 samples were 3+, 2+, and 1+, respectively). Regarding drug-resistance/susceptibility prediction, for 42 samples, ≥90% of the >9000 hits that are surveyed by TB-profiler were detected. Our results demonstrated that M. tuberculosis genome capture and sequencing directly from clinical samples constitute a potential valid backup approach for phylogenetic inferences and resistance prediction, essentially in settings when culture is not routinely performed or for samples that fail to grow.

Cite

CITATION STYLE

APA

Macedo, R., Isidro, J., Ferreira, R., Pinto, M., Borges, V., Duarte, S., … Gomes, J. P. (2023). Molecular Capture of Mycobacterium tuberculosis Genomes Directly from Clinical Samples: A Potential Backup Approach for Epidemiological and Drug Susceptibility Inferences. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24032912

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free