AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology

0Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Stimulated Raman Histology (SRH) employs the stimulated Raman scattering (SRS) of photons at biomolecules in tissue samples to generate histological images. Subsequent pathological analysis allows for an intraoperative evaluation without the need for sectioning and staining. The objective of this study was to investigate a deep learning-based classification of oral squamous cell carcinoma (OSCC) and the sub-classification of non-malignant tissue types, as well as to compare the performances of the classifier between SRS and SRH images. Raman shifts were measured at wavenumbers k1 = 2845 cm−1 and k2 = 2930 cm−1. SRS images were transformed into SRH images resembling traditional H&E-stained frozen sections. The annotation of 6 tissue types was performed on images obtained from 80 tissue samples from eight OSCC patients. A VGG19-based convolutional neural network was then trained on 64 SRS images (and corresponding SRH images) and tested on 16. A balanced accuracy of 0.90 (0.87 for SRH images) and F1-scores of 0.91 (0.91 for SRH) for stroma, 0.98 (0.96 for SRH) for adipose tissue, 0.90 (0.87 for SRH) for squamous epithelium, 0.92 (0.76 for SRH) for muscle, 0.87 (0.90 for SRH) for glandular tissue, and 0.88 (0.87 for SRH) for tumor were achieved. The results of this study demonstrate the suitability of deep learning for the intraoperative identification of tissue types directly on SRS and SRH images.

Cite

CITATION STYLE

APA

Weber, A., Enderle-Ammour, K., Kurowski, K., Metzger, M. C., Poxleitner, P., Werner, M., … Bronsert, P. (2024). AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology. Cancers, 16(4). https://doi.org/10.3390/cancers16040689

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free