An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer

14Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Breast cancer is the most prevalent cancer among women, and AXL and MET are the key genes in the PI3K/AKT/mTOR pathway as critical elements in proliferation and invasion of cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of genes. Methods: Bioinformatic approaches were used to find a miRNA that simultaneously targets both AXL and MET 3′-UTRs. The expression of target miRNA was evaluated in triple-negative (MDA-MB-231) and HER2-overexpressing (SK-BR-3) breast cancer cell lines as well as normal breast cells, MCF-10A, using quantitative real-time PCR. Then, the miRNA was overexpressed in normal and cancer cell lines using a lentiviral vector system. Afterwards, effects of overexpressed miRNA on the expression of AXL and MET genes were evaluated using quantitative real-time PCR. Results: By applying bioinformatic software and programs, miRNAs that target the 3′-UTR of both AXL and MET mRNAs were determined, and according to the scores, miR-34a was selected for further analyses. The expression level of miR-34a in MDA-MB-231 and SK-BR-3 was lower than that of MCF-10A. Furthermore, AXL and MET expression in SK-BR-3 and MDA-MB-231 was lower and higher, respectively, than that of MCF-10A. After miR-34a overexpression, MET and AXL were downregulated in MDA-MB-231. In addition, MET was downregulated in SK-BR-3, while AXL was upregulated in this cell line. Conclusions: These findings may indicate that miR-34a is an oncogenic miRNA, downregulated in the distinct breast cancer subtypes. It also targets MET and AXL 3′-UTRs in triple-negative breast cancer. Therefore, it can be considered as a therapeutic target in this type of breast cancer.

Cite

CITATION STYLE

APA

Hajalirezay Yazdi, S., Paryan, M., & Mohammadi-Yeganeh, S. (2018). An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer. Cellular and Molecular Biology Letters, 23(1). https://doi.org/10.1186/s11658-018-0116-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free