Improvements in the growth, yield, and quality of horticultural crops require the development of simply integrated, cost-efficient, and eco-friendly solutions. Hydrogen gas (H2) has been observed to have fertilization effects on soils by influencing rhizospheric microorganisms, resulting in improvements in crop yield and quality. Ample studies have shown that H2 has positive effects on horticultural crops, such as promoting root development, enhancing tolerance against abiotic and biotic stress, prolonging storage life, and improving postharvest quality of fruits, vegetables and cut flowers. In this review, we aim to evaluate the feasibility of molecular hydrogen application in horticulture and the strategies for its application, including H2 delivery methods, treatment timing, and the concentration of H2 applied. The discussion will be accompanied by outlining the effects of H2 and the likely mechanisms of its efficacy. In short, the application of H2 may provide novel opportunities for simple and cost efficient improvements of horticultural production in terms of increased yield and product quality but with low carbon dioxide emissions.
CITATION STYLE
Li, L., Zeng, Y., Cheng, X., & Shen, W. (2021, November 1). The applications of molecular hydrogen in horticulture. Horticulturae. MDPI. https://doi.org/10.3390/horticulturae7110513
Mendeley helps you to discover research relevant for your work.