Deep learning algorithms are facing the limitation in virtual reality application due to the cost of memory, computation, and real-time computation problem. Models with rigorous performance might suffer from enormous parameters and large-scale structure, and it would be hard to replant them onto embedded devices. In this paper, with the inspiration of GhostNet, we proposed an efficient structure ShuffleGhost to make use of the redundancy in feature maps to alleviate the cost of computations, as well as tackling some drawbacks of GhostNet. Since GhostNet suffers from high computation of convolution in Ghost module and shortcut, the restriction of downsampling would make it more difficult to apply Ghost module and Ghost bottleneck to other backbone. This paper proposes three new kinds of ShuffleGhost structure to tackle the drawbacks of GhostNet. The ShuffleGhost module and ShuffleGhost bottlenecks are utilized by the shuffle layer and group convolution from ShuffleNet, and they are designed to redistribute the feature maps concatenated from Ghost Feature Map and Primary Feature Map. Besides, they eliminate the gap of them and extract the features. Then, SENet layer is adopted to reduce the computation cost of group convolution, as well as evaluating the importance of the feature maps which concatenated from Ghost Feature Maps and Primary Feature Maps and giving proper weights for the feature maps. This paper conducted some experiments and proved that the ShuffleGhostV3 has smaller trainable parameters and FLOPs with the ensurance of accuracy. And with proper design, it could be more efficient in both GPU and CPU side.
CITATION STYLE
Huang, B., Zhang, H., Chen, Z., Li, L., & Shi, L. (2021). Research on Efficient Deep Learning Algorithm Based on ShuffleGhost in the Field of Virtual Reality. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/1382781
Mendeley helps you to discover research relevant for your work.