Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories

41Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Redox-based resistive random access memories (ReRAMs) are based on electrochemical processes of oxidation and reduction within the devices. The selection of materials and material combinations strongly influence the related nanoscale processes, playing a crucial role in resistive switching properties and functionalities. To date, however, comprehensive studies on device design accounting for a combination of factors such as electrodes, electrolytes, and capping layer materials related to their thicknesses and interactions are scarce. In this work, the impact of materials’ configuration on interfacial redox reactions in HfO2-based electrochemical metallization memory (ECM) and valence-change memory (VCM) systems is reported. The redox processes are studied by cyclic voltammetry, and the corresponding resistive switching characteristics are investigated. In ECM cells, the overall cell resistance depends on the electrocatalytic activity of the counter electrode. Nonetheless, the capping layer material further influences the cell resistance and the SET and RESET voltages. In VCM systems, the influence of the electrode material configuration is also pronounced, and is capable of modulating the active resistive switching interface. For both types of memory cells, the switching behavior changes significantly with variation of the oxide thickness. The results present important materials selection criteria for rationale design of ReRAM cells for various memristive applications.

Cite

CITATION STYLE

APA

Chen, S., & Valov, I. (2022). Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories. Advanced Materials, 34(3). https://doi.org/10.1002/adma.202105022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free