In Autonomous and Intelligent systems (AIS), the decision-making process can be divided into two parts: (i) the priorities of the requirements are determined at design-time; (ii) design selection follows where alternatives are compared, and the preferred alternatives are chosen autonomously by the AIS. Runtime design selection is a trade-off analysis between non-functional requirements (NFRs) that uses optimisation methods, including decision-analysis and utility theory. The aim is to select the design option yielding the highest expected utility. A problem with these techniques is that they use a uni-scalar cumulative utility value to represent a combined priority for all the NFRs. However, this uni-scalar value doesn't give information about the varying impacts of actions under uncertain environmental contexts on the satisfaction priorities of individual NFRs. In this paper, we present a novel use of Multi-Reward Partially Observable Markov Decision Process (MR-POMDP) to support reasoning of separate NFR priorities. We discuss the use of rewards in MR-POMDPs as a way to support AIS with (a) priority-aware decision-making; and (b) maintain service-level agreement, by autonomously tuning NFRs' priorities to new contexts and based on data gathered at runtime. We evaluate our approach by applying it to a substantial Network case.
CITATION STYLE
Samin, H., Paucar, L. H. G., Bencomo, N., & Sawyer, P. (2021). Towards priority-awareness in autonomous intelligent systems. In Proceedings of the ACM Symposium on Applied Computing (pp. 1328–1337). Association for Computing Machinery. https://doi.org/10.1145/3412841.3442007
Mendeley helps you to discover research relevant for your work.