Remove of Humic Acid From Water Using Magnetite Nanoparticles

  • Smiri M
  • Guey F
  • Chemingui H
  • et al.
N/ACitations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Synthesis, characterization and application of iron oxide nanoparticles have received much attention in recent years due to their interesting chemical and physics properties. Magnetite (Fe3O4) nanoparticles were synthesed by chemical co-precipitation and characterized using X ray diffraction (XDR), Fourier transmission spectroscopy (FT-IR), dynamic light scattering and (DLS). Fe3O4 nanoparticles were successfully removed humic acid (HA) from water. The influence of pH, contact time, adsorbent nanoparticle doses and HA concentrations were analyzed. Maximum HA removal occurred at pH 6 (89.63%), 40 mg.L-1 of Magnetite (88.8%), 0.03g of HA (96.64%) and contact time of 20 min (94.37%). Sorption data fit pseudo-second order kinetics, indicated a chemical adsorption process. The Langmuir, Freundlich and Temkin adsorption isotherm models were applied to describe equilibrium data. Adsorption of HA on magnetite nanoparticles was well described by Temkin model. The maximum adsorption capacity was 128.23 mg.g-1. Fe3O4 nanoparticles were promising potential adsorbents for HA removal from water.

Cite

CITATION STYLE

APA

Smiri, M., Guey, F., Chemingui, H., Dekhil, A. B., Elarbaoui, S., & Hafiane, A. (2020). Remove of Humic Acid From Water Using Magnetite Nanoparticles. European Journal of Advanced Chemistry Research, 1(4). https://doi.org/10.24018/ejchem.2020.1.4.9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free