Microbial patterns signaling via toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival

75Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

Abstract

Epithelial cells (ECs) continuously interact with microorganisms and detect their presence via different pattern-recognition receptors (PRRs) including Toll-like receptors (TLRs). Ligation of epithelial TLRs by pathogens is usually associated with the induction of pro-inflammatory mediators and antimicrobial factors. In this study, using human airway ECs as a model, we found that detection of microbial patterns via epithelial TLRs directly regulates tissue homeostasis. Staphylococcus aureus (S. aureus) and microbial patterns signaling via TLR2 and TLR5 induce a set of non-immune epithelial responses including cell migration, wound repair, proliferation, and survival of primary and cancerous ECs. Using small interfering RNA (siRNA) gene targeting, receptor-tyrosine kinase microarray and inhibition studies, we determined that TLR and the epidermal growth factor receptor (EGFR) mediate the stimulating effect of microbial patterns on epithelial repair. Microbial patterns signaling via Toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. This effect is independent of hematopoietic and other cells as well as inflammatory cytokines suggesting that epithelia are able to regulate their integrity in an autonomous non-inflammatory manner by sensing microbes directly via TLRs. © 2008 Shaykhiev et al.

Cite

CITATION STYLE

APA

Shaykhiev, R., Behr, J., & Bals, R. (2008). Microbial patterns signaling via toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. PLoS ONE, 3(1). https://doi.org/10.1371/journal.pone.0001393

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free