Cover -- Contents -- 1 Introduction to Single Molecule Chemistry and Physics -- 2 Basics of Electron Tunneling Processes and Scanning Tunneling Microscopy -- 2.1 Principles of Tunneling Processes -- 2.1.1 Elastic Tunneling Process -- 2.1.2 Inelastic Tunneling Process -- 2.1.3 Two-Step Tunneling Process -- 2.1.4 Resonant Tunneling Effect -- 2.2 Introduction to Scanning Tunneling Microscopy (STM) -- 2.2.1 Introduction to STM -- 2.2.2 STM Contrast Mechanisms -- 2.2.3 Scanning Tunneling Spectroscopy (STS) -- 2.2.4 Measurement of Apparent Tunneling Barrier Height -- 3 Single Molecule Structural Characterization -- 3.1 Molecular Imaging Mechanisms of STM -- 3.1.2 HOMO-Ionization Potential Model -- 3.1.3 Work Function Model -- 3.2 Single Diatomic Molecules on Metal Surfaces -- 3.2.1 CO -- 3.2.2 O2 Molecules -- 3.3 Aromatic Molecules and Macrocyclic Molecules -- 3.3.1 Single Benzene Molecules Observed by STM -- 3.3.2 Phthalocyanines (Pc) -- 3.3.3 Porphyrin -- 3.3.4 Heterocyclic Molecules -- 3.3.5 Fullerene -- 3.3.6 Other Molecules -- 3.4 Single Hydrocarbon Molecules -- 3.5 Single Molecules Immobilized by Molecular Matrix -- 3.5.1 Hydrogen-Bonded Networks and Single Molecule Inclusions -- 3.5.2 Molecular Networks Stabilized by van der Waals Interaction -- 3.6 Single Molecule Adsorption on Organic Substrates -- 3.6.1 Simple Alkane Lamella -- 3.6.2 Alkylated Amino Acid Molecular Templates -- 3.6.3 Tridodecyl Amine (TDA) Templates -- 3.7 Electron-Spin Resonance Study of Single Molecules -- 4 Single Molecule Diffusion and Chemical Reactions -- 4.1 Molecular Diffusion on Surfaces -- 4.1.1 Thermal-Activated Single Molecule Diffusion -- 4.1.2 Laser-Activated Single Molecule Diffusion -- 4.1.3 Field-Induced Diffusion of Single Atoms -- 4.2 Single Atom and Molecule Manipulations -- 4.2.1 Controlled Manipulation of Single Xe Atoms -- 4.2.2 Si Atoms -- 4.2.3 Gold Atoms -- 4.2.4 CO Molecules -- 4.2.5 C60 Molecules -- 4.3 Single Molecule Chemical Reactions on Metal Surfaces -- 4.3.1 Single Molecule Oxidative Reaction on Metal Surfaces -- 4.3.2 Dissociative Adsorption of H2 -- 4.3.3 Dissociative Adsorption of NO -- 4.3.4 Dissociation of NH3 -- 4.3.5 CO Oxidation -- 4.3.6 Dehydrogenation of Single Molecules -- 4.3.7 Tip-Induced Reactions of Single Iodobenzene on Cu111 -- 4.3.8 Formation of Metal Ligand Complexes -- 4.3.9 Other Reaction Model Systems -- 4.4 Single Molecules on Semiconductor Surfaces -- 4.4.1 Single H2 Molecules on Si(100) -- 4.4.2 Single NH3 Molecules on Si Surfaces -- 4.4.3 Single O2 on Ge(111), Si(100) and Si(111) -- 4.4.4 Other Molecules on Si Surfaces -- 4.5 Single Molecule Reactions on Metal Oxide Surfaces -- 4.5.1 TiO2 -- 4.5.2 CO on RuO2(110) -- 4.5.3 Fe Oxide Surfaces -- 4.5.4 Other Oxide Surfaces -- 5 Molecular Scale Analysis Using Scanning Force Microscopy -- 5.1 Basic Principles of Atomic Force Microscopy (AFM) -- 5.1.1 Introduction.
CITATION STYLE
Kelley, A. M. (2007). Single Molecule Chemistry and Physics: An Introduction. Physics Today, 60(9), 73–74. https://doi.org/10.1063/1.2784690
Mendeley helps you to discover research relevant for your work.