Voluntary actions rely on appropriate flexibility of intentions. Usually, we should pursue our goals, but sometimes we should change goals if they become too costly to achieve. Using functional magnetic resonance imaging, we investigated the neural dynamics underlying the capacity to change one's mind based on new information after action onset. Multivariate pattern analyses revealed that in visual areas, neural representations of intentional choice between 2 visual stimuli were unchanged by additional decision-relevant information. However, in fronto-parietal cortex, representations changed dynamically as decisions evolved. Precuneus, angular gyrus, and dorsolateral prefrontal cortex encoded new externally cued rewards/costs that guided subsequent changes of mind. Activity in medial frontal cortex predicted changes of mind when participants detached from externally cued evidence, suggesting a role in endogenous decision updates. Finally, trials with changes of mind were associated with an increase in functional connectivity between fronto-parietal areas, allowing for integration of various endogenous and exogenous decision components to generate a distributed consensus about whether to pursue or abandon an initial intention. In conclusion, local and global dynamics of choice representations in fronto-parietal cortex allow agents to maintain the balance between adapting to changing environments versus pursuing internal goals.
CITATION STYLE
Löffler, A., Haggard, P., & Bode, S. (2020). Decoding Changes of Mind in Voluntary Action - Dynamics of Intentional Choice Representations. Cerebral Cortex, 30(3), 1199–1212. https://doi.org/10.1093/cercor/bhz160
Mendeley helps you to discover research relevant for your work.