Enhanced azo-dyes degradation performance of Fe-Si-B-P nanoporous architecture

21Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol-1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders.

Cite

CITATION STYLE

APA

Weng, N., Wang, F., Qin, F., Tang, W., & Dan, Z. (2017). Enhanced azo-dyes degradation performance of Fe-Si-B-P nanoporous architecture. Materials, 10(9). https://doi.org/10.3390/ma10091001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free