Obesity is typically linked to oxidative stress and inflammation, which lead to vascular damage and initiate the progression of atherosclerosis. The aim of this study was to determine the anti-atherosclerotic effect of orlistat on obesity-induced vascular oxidative stress in obese male rats. Twenty-four male Sprague–Dawley rats were categorized into two groups: normal (Normal group, n = 6) and high-fat diet (HFD group, n = 12). After six weeks, obese rats in the HFD group were administered either with distilled water (OB group) or orlistat 10 mg/kg/day (OB/OR group) for another six weeks. The OB group had a significant increase in lipid profiles (total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL)) and decrease in high-density lipoprotein (HDL) level compared to the Normal group. The aortic antioxidants enzymes activities (superoxide dis-mutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and catalase (CAT)) as well as total glutathione (GSH) and total antioxidant capacity (TAC) of the OB group were significantly decreased compared to the Normal group. Furthermore, pro-inflammatory atherosclerotic markers (tumour necrosis factor-alpha (TNF-ɑ), vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1)) expressions were increased significantly, and anti-inflammatory marker (interleukin-10 (IL-10)) was decreased significantly in the OB group compared to the Normal group. Treatment with orlistat significantly improved lipid profile, increased antioxidant enzymes and expression of anti-inflammatory markers, and decreased the expression of the pro-inflammatory marker compared to the OB group. These findings may suggest the therapeutic effect of orlistat in attenuating the progression of the athero-sclerotic stage in obesity.
CITATION STYLE
Othman, Z. A., Zakaria, Z., Suleiman, J. B., Ghazali, W. S. W., & Mohamed, M. (2021). Anti-atherogenic effects of orlistat on obesity-induced vascular oxidative stress rat model. Antioxidants, 10(2), 1–16. https://doi.org/10.3390/antiox10020251
Mendeley helps you to discover research relevant for your work.