An acetic acid bacterium, designated as isolate AC28T, was isolated trom a flower of red ginger (khing daeng in Thai; Alpinia purpurata) collected in Chiang Mai, Thailand, at pH 3.5 by use of a glucose/ethanol/acetic acid (0.3%, w/v) medium. A phylogenetic tree based on 16S rRNA gene sequences for 1,376 bases showed that isolate AC28T constituted a cluster along with the type strain of Kozakia baliensis. However, the isolate formed an independent cluster in a phylogenetic tree based on 16S-23S rDNA internal transcribed spacer (ITS) region sequences for 586 bases. Pair-wise sequence similarities of the isolate in 16S rRNA gene sequences for 1,457 bases were 93.0-88.3% to the type strains of Asaia, Kozakia, Swaminathania, Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, and Saccharibacter species. Restriction analysis of 16S-235 rDNA ITS regions discriminated isolate AC28T from the type strains of Asaia and Kozakia species. Cells were non-motile. Colonies were pink, shiny, and smooth. The isolate produced acetic acid from ethanol. Oxidation of acetate and lactate was negative. The isolate grew on glutamate agar and mannitol agar. Growth was positive on 30% D-glucose (w/v) and in the presence of 0.35% acetic acid (w/v), but not in the presence of 1.0% KNO3 (w/v). Ammoniac nitrogen was hardly assimilated on a glucose medium or a mannitol medium. Production of dihydroxyacetone from glycerol was weakly positive. The isolate did not produce a levan-like polysaccharide on a sucrose medium. Major isoprenoid quinone was Q-10. DNA base composition was 63.1 mol% G+C. On the basis of the results obtained, Neoasaia gen. nov. was proposed with Neoasaia chiangmaiensis sp. nov. The type strain was isolate AC28T (=BCC 15763T =NBRC 101099T). Copyright © 2005 by The Microbiology Research Foundation.
CITATION STYLE
Yukphan, P., Malimas, T., Potacharoen, W., Tanasupwat, S., Tanticharoen, M., & Yamada, Y. (2005). Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the α-Proteobacteria. Journal of General and Applied Microbiology, 51(5), 301–311. https://doi.org/10.2323/jgam.51.301
Mendeley helps you to discover research relevant for your work.