Cryogenic Energy Storage (CES) systems are able to improve the stability of electrical grids with large shares of intermittent power plants. In CES systems, excess electrical energy can be used in the liquefaction of cryogenic fluids, which may be stored in large cryogenic vessels for long periods of time. When the demand for electricity is high, work is recovered from the cryogen during a power cycle using ambient or waste heat as an upper heat source. Most research is focused on liquid air energy storage (LAES). However, natural gas can also be a promising working fluid for the CES system. This paper presents a natural gas-based CES system, coupled with a low temperature packed bed cold storage unit. The cold, which is stored at a low temperature level, can be used to increase the efficiency of the cryogenic liquefiers. The model for the packed bed in a high grade cold storage unit was implemented and then compared with the experimental data. The impact of cold recycling on the liquefaction yield and efficiency of the cryogenic energy storage system was investigated.
CITATION STYLE
Wojcieszak, P., & Malecha, Z. (2018). Cryogenic energy storage system coupled with packed-bed cold storage. In E3S Web of Conferences (Vol. 44). EDP Sciences. https://doi.org/10.1051/e3sconf/20184400190
Mendeley helps you to discover research relevant for your work.