Monolayer MoS2 field effect transistor with low Schottky barrier height with ferromagnetic metal contacts

11Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Two-dimensional MoS2 has emerged as promising material for nanoelectronics and spintronics due to its exotic properties. However, high contact resistance at metal semiconductor MoS2 interface still remains an open issue. Here, we report electronic properties of field effect transistor devices using monolayer MoS2 channels and permalloy (Py) as ferromagnetic (FM) metal contacts. Monolayer MoS2 channels were directly grown on SiO2/Si substrate via chemical vapor deposition technique. The increase in current with back gate voltage (Vg) shows the tunability of FET characteristics. The Schottky barrier height (SBH) estimated for Py/MoS2 contacts is found to be +28.8 meV (at Vg = 0V), which is the smallest value reported so-far for any direct metal (magnetic or non-magnetic)/monolayer MoS2 contact. With the application of positive gate voltage, SBH shows a reduction, which reveals ohmic behavior of Py/MoS2 contacts. Low SBH with controlled ohmic nature of FM contacts is a primary requirement for MoS2 based spintronics and therefore using directly grown MoS2 channels in the present study can pave a path towards high performance devices for large scale applications.

Cite

CITATION STYLE

APA

Gupta, S., Rortais, F., Ohshima, R., Ando, Y., Endo, T., Miyata, Y., & Shiraishi, M. (2019). Monolayer MoS2 field effect transistor with low Schottky barrier height with ferromagnetic metal contacts. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-53367-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free