GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

5Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

With the development of computing and communication technologies, extremely large amount of data has been collected, stored, utilized, and shared, while new security and privacy challenges arise. Existing platforms do not provide flexible and practical access control mechanisms for big data analytics applications. In this paper, we present GuardSpark++, a fine-grained access control mechanism for secure data sharing and analysis in Spark. In particular, we first propose a purpose-aware access control (PAAC) model, which introduces new concepts of data processing/operation purposes to conventional purpose-based access control. An automatic purpose analysis algorithm is developed to identify purposes from data analytics operations and queries, so that access control could be enforced accordingly. Moreover, we develop an access control mechanism in Spark Catalyst, which provides unified PAAC enforcement for heterogeneous data sources and upper-layer applications. We evaluate GuardSpark++ with five data sources and four structured data analytics engines in Spark. The experimental results show that GuardSpark++ provides effective access control functionalities with a very small performance overhead (average 3.97%).

References Powered by Scopus

MapReduce: Simplified data processing on large clusters

11920Citations
N/AReaders
Get full text

Apache spark: A unified engine for big data processing

1922Citations
N/AReaders
Get full text

Spark SQL: Relational data processing in spark

1088Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Dynamic and scalable enforcement of access control policies for big data

16Citations
N/AReaders
Get full text

SparkAC: Fine-Grained Access Control in Spark for Secure Data Sharing and Analytics

4Citations
N/AReaders
Get full text

Interpretable Risk-aware Access Control for Spark: Blocking Attack Purpose Behind Actions

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Xue, T., Wen, Y., Luo, B., Zhang, B., Zheng, Y., Hu, Y., … Meng, D. (2020). GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark. In ACM International Conference Proceeding Series (pp. 582–596). Association for Computing Machinery. https://doi.org/10.1145/3427228.3427640

Readers over time

‘21‘22‘24036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

100%

Readers' Discipline

Tooltip

Computer Science 2

67%

Social Sciences 1

33%

Save time finding and organizing research with Mendeley

Sign up for free
0