Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill learning, and exploration

41Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

Abstract

Midbrain dopamine neurons, which can be regulated by neuropeptides and hormones, play a fundamental role in controlling cognitive processes, reward mechanisms, and motor functions. The hormonal actions of insulin-like growth factor 1 (IGF-1) produced by the liver have been well described, but the role of neuronally derived IGF-1 remains largely unexplored. We discovered that dopamine neurons secrete IGF-1 from the cell bodies following depolarization, and that IGF-1 controls release of dopamine in the ventral midbrain. In addition, conditional deletion of dopamine neuron-derived IGF-1 in adult mice leads to decrease of dopamine content in the striatum and deficits in dopamine neuron firing and causes reduced spontaneous locomotion and impairments in explorative and learning behaviors. These data identify that dopamine neuron-derived IGF-1 acts as a regulator of dopamine neurons and regulates dopamine-mediated behaviors.

Cite

CITATION STYLE

APA

Pristerà, A., Blomeley, C., Lopes, E., Threlfell, S., Merlini, E., Burdakov, D., … Ang, S. L. (2019). Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill learning, and exploration. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3817–3826. https://doi.org/10.1073/pnas.1806820116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free