Thermal environmental design in an outdoor space is discussed by focusing on the proper selection and arrangement of buildings, trees, and covering materials via the examination of redevelopment buildings in front of Central Osaka Station, where several heat island countermeasure technologies have been introduced. Surface temperatures on the ground and wall were calculated based on the surface heat budget equation in each 2 m size mesh of the ground and building wall surface. Incident solar radiation was calculated using ArcGIS and building shape data. Mean radiant temperature (MRT) of the human body was calculated using these results. Distribution of wind velocity was calculated by computational fluid dynamics (CFD) reproducing buildings, obstacles, trees, and the surroundings. The eect of MRT on SET was greater than that of wind velocity at 13:00 and 17:00 on a typical summer day. SET reduction was the highest by solar radiation shading, followed by surface material change and ventilation. The largest ratio of the area considered for the thermal environment was 83% on Green Garden, which consists of 44% of building shade, 21% of tree shade, 7% of water surface, and 11% of green cover. It is appropriate to consider the thermal environment design of outdoor space in the order of shade by buildings, shading by trees, and improvement of surface materials.
CITATION STYLE
Takebayashi, H. (2019). Thermal environment design of outdoor spaces by examining redevelopment buildings opposite central osaka station. Climate, 7(12). https://doi.org/10.3390/cli7120143
Mendeley helps you to discover research relevant for your work.