Production and 3D Printing of a Nanocellulose-Based Composite Filament Composed of Polymer-Modified Cellulose Nanofibrils and High-Density Polyethylene (HDPE) for the Fabrication of 3D Complex Shapes

13Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

This work aims to produce a 3D-printable bio-based filament composed of high-density polyethylene (HDPE) and chemically modified cellulose nanofibrils. Printing using HDPE as a raw material is challenging due to its massive shrinkage and warping problems. This paper presents a new method to overcome those difficulties by enhancing the mechanical properties and achieving better print quality. This was achieved using modified cellulose nanofibrils (CNFs) as fillers. Firstly, CNF was converted to a CNF-based macroinitiator through an esterification reaction, followed by a surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) of the hydrophobic monomer stearyl acrylate. Poly stearyl acrylate-grafted cellulose nanofibrils, CNF-PSAs, were synthesized, purified and characterized with ATR-FTIR, 13C CP-MAS NMR, FE-SEM and water contact angle measurements. A composite was successfully produced using a twin-screw extruder with a CNF-PSA content of 10 wt.%. Mechanical tests were carried out with tensile testing. An increase in the mechanical properties, up to 23% for the Young’s modulus, was observed. A morphologic analysis also revealed the good matrix/CNF compatibility, as no CNF aggregates could be observed. A reduction in the warping behavior for the composite filament compared to HDPE was assessed using a circular arc method. The 3D printing of complex objects using the CNF-PSA/HDPE filament resulted in better print quality when compared to the object printed with neat HDPE. Therefore, it could be concluded that CNF-PSA was a suitable filler for the reinforcement of HDPE, thus, rendering it suitable for 3D printing.

Cite

CITATION STYLE

APA

Dalloul, F., Mietner, J. B., & Navarro, J. R. G. (2022). Production and 3D Printing of a Nanocellulose-Based Composite Filament Composed of Polymer-Modified Cellulose Nanofibrils and High-Density Polyethylene (HDPE) for the Fabrication of 3D Complex Shapes. Fibers, 10(10). https://doi.org/10.3390/fib10100091

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free