Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation

633Citations
Citations of this article
174Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Anthocyanin synthesis in Vitis vinifera L. cv Shiraz grape berries began 10 weeks postflowering and continued throughout berry ripening. Expression of seven genes of the anthocyanin biosynthetic pathway (phenylalanine ammonia lyase [PAL], chalcone synthase [CHS], chalcone isomerase [CHI], flavanone-3- hydroxylase [F3H], dihydroflavonol 4-reductase [DFR], leucoanthocyanidin dioxygenase [LDOX], and UDP glucose-flavonoid 3-o-glucosyl transferase [UFGT]) was determined. In flowers and grape berry skins, expression of all of the genes, except UFGT, was detected up to 4 weeks postflowering, followed by a reduction in this expression 6 to 8 weeks postflowering. Expression of CHS, CHI, F3H, DFR, LDOX, and UFGT then increased 10 weeks postflowering, coinciding with the onset of anthocyanin synthesis. In grape berry flesh, no PAL or UFGT expression was detected at any stage of development, but CHS, CHI, F3H, DFR, and LDOX were expressed up to 4 weeks postflowering. These results indicate that the onset of anthocyanin synthesis in ripening grape berry skins coincides with a coordinated increase in expression of a number of genes in the anthocyanin biosynthetic pathway, suggesting the involvement of regulatory genes. UFGT is regulated independently of the other genes, suggesting that in grapes the major control point in this pathway is later than that observed in maize, petunia, and snapdragon.

Cite

CITATION STYLE

APA

Boss, P. K., Davies, C., & Robinson, S. P. (1996). Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiology, 111(4), 1059–1066. https://doi.org/10.1104/pp.111.4.1059

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free