Multiscale Characterization of Nanoengineered Fiber-Reinforced Composites: Effect of Carbon Nanotubes on the Out-of-Plane Mechanical Behavior

12Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mechanical properties of the matrix and the fiber/matrix interface have a relevant influence over the mechanical properties of a composite. In this work, a glass fiber-reinforced composite is manufactured using a carbon nanotubes (CNTs) doped epoxy matrix. The influence of the CNTs on the material mechanical behavior is evaluated on the resin, on the fiber/matrix interface, and on the composite. On resin, the incorporation of CNTs increased the hardness by 6% and decreased the fracture toughness by 17%. On the fiber/matrix interface, the interfacial shear strength (IFSS) increased by 22% for the nanoengineered composite (nFRC). The influence of the CNTs on the composite behavior was evaluated by through-thickness compression, short beam flexural, and intraply fracture tests. The compressive strength increased by 6% for the nFRC, attributed to the rise of the matrix hardness and the fiber/matrix IFSS. In contrast, the interlaminar shear strength (ILSS) obtained from the short beam tests was reduced by 8% for the nFRC; this is attributed to the detriment of the matrix fracture toughness. The intraply fracture test showed no significant influence of the CNTs on the fracture energy; however, the failure mode changed from brittle to ductile in the presence of the CNTs.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Medina, C., Fernandez, E., Salas, A., Naya, F., Molina-Aldereguiá, J., Melendrez, M. F., & Flores, P. (2017). Multiscale Characterization of Nanoengineered Fiber-Reinforced Composites: Effect of Carbon Nanotubes on the Out-of-Plane Mechanical Behavior. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/9809702

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

43%

Professor / Associate Prof. 4

29%

Researcher 3

21%

Lecturer / Post doc 1

7%

Readers' Discipline

Tooltip

Engineering 8

67%

Materials Science 2

17%

Chemical Engineering 1

8%

Chemistry 1

8%

Save time finding and organizing research with Mendeley

Sign up for free