Analyzing glacier surface motion using LiDAR data

22Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Understanding glacier motion is key to understanding how glaciers are growing, shrinking, and responding to changing environmental conditions. In situ observations are often difficult to collect and offer an analysis of glacier surface motion only at a few discrete points. Using light detection and ranging (LiDAR) data collected from surveys over six glaciers in Greenland and Antarctica, particle image velocimetry (PIV) was applied to temporally-spaced point clouds to detect and measure surface motion. The type and distribution of surface features, surface roughness, and spatial and temporal resolution of the data were all found to be important factors, which limited the use of PIV to four of the original six glaciers. The PIV results were found to be in good agreement with other, widely accepted, measurement techniques, including manual tracking and GPS, and offered a comprehensive distribution of velocity data points across glacier surfaces. For three glaciers in Taylor Valley, Antarctica, average velocities ranged from 0.8-2.1 m/year. For one glacier in Greenland, the average velocity was 22.1 m/day (8067 m/year).

Cite

CITATION STYLE

APA

Telling, J. W., Glennie, C., Fountain, A. G., & Finnegan, D. C. (2017). Analyzing glacier surface motion using LiDAR data. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030283

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free