The Significance of Digital Elevation Models in the Calculation of LS Factor and Soil Erosion

22Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

This study focuses on the role of topography in soil erosion modelling by examining the impact of topographic data from various sources on the calculation of the slope length and slope steepness factor (LS). For this purpose, the Pinios dam drainage basin in the Ilia Regional Unit, Western Greece, was selected as a pilot area of this study. Specifically, six Digital Elevation Models (DEM) from four different sources with various resolutions (5, 30, and 90 m) were compared with ground control point (GCP) values to assess their relative vertical accuracy. These DEM were acquired for the calculation of the LS factor by using two different equations. Then the calculated LS factors were implemented in the RUSLE model for the estimation of soil loss. The current study includes a comparative analysis of the elevation, the slopes, the LS factor, and the soil loss. The results showed that the 5 m resolution DEM had the best vertical accuracy, and thus it is considered to be the most suitable DEM for soil erosion modelling. Moreover, the comparison of the DEM elevation values showed high similarity, in contrast to the slope values. In addition, the comparative assessment of the LS and soil loss values calculated from each DEM with the two LS equations revealed a great divergence. It is noticeable that both LS and soil loss results presented higher values for slopes greater than 20°. It is concluded that the comparison of the LS values calculated with the two examined approaches and the use of different DEM with various resolutions and different sources does not change consistently with the increase of DEM grid size and accuracy. Thus, it is very significant in soil erosion modelling to use an LS equation that imports thresholds in its formula to avoid overestimation in soil loss calculations.

References Powered by Scopus

Soil attribute prediction using terrain analysis

1202Citations
485Readers

This article is free to access.

This article is free to access.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Michalopoulou, M., Depountis, N., Nikolakopoulos, K., & Boumpoulis, V. (2022). The Significance of Digital Elevation Models in the Calculation of LS Factor and Soil Erosion. Land, 11(9). https://doi.org/10.3390/land11091592

Readers over time

‘22‘23‘24‘2505101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 11

58%

Lecturer / Post doc 6

32%

Researcher 2

11%

Readers' Discipline

Tooltip

Engineering 9

39%

Environmental Science 7

30%

Agricultural and Biological Sciences 6

26%

Sports and Recreations 1

4%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1
Social Media
Shares, Likes & Comments: 41

Save time finding and organizing research with Mendeley

Sign up for free
0