Restoration of demised keystone-species populations is an overriding concern in conservation biology. However, since no population is independent of its environment, progress is needed in predicting the efficacy of restoration in unstable ecological contexts. Here, by means of Population Dynamics P-system Models (PDP), we studied long-term changes in the population size of Egyptian vultures (Neophron percnopterus) inhabiting a Natural Park, northern Spain, to changes in the numbers of wild rabbits (Oryctolagus cuniculus), a keystone-species of Mediterranean ecosystems that have suffered >90% population decline after a hemorrhagic disease outbreak. Low availability of rabbit carcasses leads Egyptian vultures to extend their foraging activities to unprotected areas with higher non-natural mortality whereas growing numbers of griffon vultures (Gyps fulvus), a dominant competitor, progressively monopolize trophic resources resulting in a focal population decrease. Modeling shows that, even if keystone-species populations recover in core protected areas, the return to the original studied population size may be unfeasible, due to both the high non-natural mortality rates in humanized areas and long-term changes in the scavenger guild structure. Policy decisions aimed to restore keystone-species should rely on holistic approaches integrating the effects of spatial heterogeneity on both producer and consumer populations as well as within-guild processes.
CITATION STYLE
Cortés-Avizanda, A., Colomer, M. À., Margalida, A., Ceballos, O., & Donázar, J. A. (2015). Modeling the consequences of the demise and potential recovery of a keystone-species: Wild rabbits and avian scavengers in Mediterranean landscapes. Scientific Reports, 5. https://doi.org/10.1038/srep17033
Mendeley helps you to discover research relevant for your work.