Aerobic methane oxidization in the pelagic ocean serves an important role in limiting methane release to the atmosphere, yet little is known about the identity and distribution of bacteria that mediate this process. The distribution of putative methane-oxidizing marine groups, OPU1, OPU3 and Group X, was assessed in different ocean provinces using a newly developed fingerprinting method (monooxygenase intergenic spacer analysis (MISA)) in combination with pmoA clone library analysis and quantitative PCR (qPCR). The distribution of these three distinct monooxygenase groups, previously reported from pelagic marine environments, was examined in 39 samples including active methane seeps in the Gulf of Mexico and Santa Monica Bay, submarine canyon heads along the California continental margin, an oligotrophic subtropical gyre and areas proximal to a hydrothermal vent in the North Fiji back-arc basin. OPU1 and OPU3 were widely and similarly distributed within the meso- and bathypelagic zone (110 to ∼2000 m water depth) and showed a >50-fold greater abundance near methane seeps relative to non-seep sites. In contrast, Group X was predominantly recovered from samples along the California margin, at both seep and non-seep sites. All three phylotypes were below detection in the epipelagic zone to depths of 100 m. Several additional deeply branching monooxygenase sequences were also identified in this study, indicating the presence of uncharacterized groups of microorganisms potentially involved in the cycling of methane or ammonium. © 2010 International Society for Microbial Ecology All rights reserved.
CITATION STYLE
Tavormina, P. L., Ussler, W., Joye, S. B., Harrison, B. K., & Orphan, V. J. (2010). Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME Journal, 4(5), 700–710. https://doi.org/10.1038/ismej.2009.155
Mendeley helps you to discover research relevant for your work.