Neural Network AEROsol Retrieval for Geostationary Satellite (NNAeroG) Based on Temporal, Spatial and Spectral Measurements

12Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Geostationary satellites observe the earth surface and atmosphere with a short repeat time, thus, providing aerosol parameters with high temporal resolution, which contributes to the air quality monitoring. Due to the limited information content in satellite data, and the coupling between the signals received from the surface and the atmosphere, the accurate retrieval of multiple aerosol parameters over land is difficult. With the strategy of taking full advantage of satellite measurement information, here we propose a neural network AEROsol retrieval framework for geostationary satellite (NNAeroG), which can potentially be applied to different instruments to obtain various aerosol parameters. NNAeroG was applied to the Advanced Himawari Imager on Himawari-8 and the results were evaluated versus independent ground-based sun photometer reference data. The aerosol optical depth, Ångström exponent and fine mode fraction produced by the NNAeroG method are significantly better than the official JAXA aerosol products. With spectral bands selection, the use of thermal infrared bands is meaningful for aerosol retrieval.

Cite

CITATION STYLE

APA

Chen, X., Zhao, L., Zheng, F., Li, J., Li, L., Ding, H., … de Leeuw, G. (2022). Neural Network AEROsol Retrieval for Geostationary Satellite (NNAeroG) Based on Temporal, Spatial and Spectral Measurements. Remote Sensing, 14(4). https://doi.org/10.3390/rs14040980

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free