Source rupture process of Lushan M S7.0 earthquake, Sichuan, China and its tectonic implications

31Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The source rupture process of the M S7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations. Results reveal that the rupture process of the Lushan M S7.0 event to be simpler than that of the Wenchuan earthquake and also showed significant differences between the two rupture processes. The whole rupture process lasted 36 s and most of the moment was released within the first 13 s. The total released moment is 1.9×1019N m with M W=6.8. Rupture propagated upwards and bilaterally to both sides from the initial point, resulting in a large slip region of 40 km×30 km, with the maximum slip of 1.8 m, located above the initial point. No surface displacement was estimated around the epicenter, but displacement was observed about 20 km NE and SW directions of the epicenter. Both showed slips of less than 40 cm. The rupture suddenly stopped at 20 km NE of the initial point. This was consistent with the aftershock activity. This phenomenon indicates the existence of significant variation of the medium or tectonic structure, which may prevent the propagation of the rupture and aftershock activity. The earthquake risk of the left segment of Qianshan fault is worthy of attention. © 2013 The Author(s).

Cite

CITATION STYLE

APA

Zhao, C. P., Zhou, L. Q., & Chen, Z. L. (2013). Source rupture process of Lushan M S7.0 earthquake, Sichuan, China and its tectonic implications. Chinese Science Bulletin, 58(28–29), 3444–3450. https://doi.org/10.1007/s11434-013-6017-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free