The factors influencing how soil nitrite (NO2-)- and ammonia (NH3)-oxidizing activities remain coupled are unknown. A short-term study ( < 48 h) was conducted to examine the dynamics of NO2--oxidizing activity and the accumulation of NO2- in three Oregon soils stimulated by the addition of 1 mM NH4+ in soil slurry. Nitrite initially accumulated in all three soils; its subsequent decline or slowing of the accumulation of the NO2- pool by 24 h was accompanied by an increase in the size of the nitrate (NO3-) pool, indicating a change in NO2- oxidation kinetics. Bacterial protein synthesis inhibitors prevented the NO2- pool decline, resulting in a larger accumulation in all three soils. Although no significant increases in NO2--oxidizing bacteria nxrA (Nitrobacter) and nxrB (Nitrospira) gene abundances were detected over the time course, maximum NO2- consumption rates increased 2-fold in the treatment without antibiotics compared to no change with antibiotics. No changes were observed in the apparent half saturation constant (Km) values for NO2- consumption. This study demonstrates phenotypic flexibility among soil NO2- oxidizers, which can undergo protein synthesis-dependent increases in NO2- consumption rates to match NH3 oxidation rates and recouple nitrification.
CITATION STYLE
Giguere, A. T., Taylor, A. E., Myrold, D. D., Mellbye, B. L., Sayavedra-Soto, L. A., & Bottomley, P. J. (2018). Nitrite-oxidizing activity responds to nitrite accumulation in soil. FEMS Microbiology Ecology, 94(3). https://doi.org/10.1093/femsec/fiy008
Mendeley helps you to discover research relevant for your work.