Personalizing wearable robots by incorporating user physiological feedback can improve energy efficiency and comfort. However, many current personalization methods are specific to a particular device and often require reprogramming, making them less accessible. In this study, we present an open-source, device-independent personalization framework that allows for human-in-the-loop optimization. This modular framework includes cost functions and optimization algorithms that use a physiological response to optimize wearable robot parameters. We tested this framework in three case studies involving diverse subjects and wearable robots. The first case study focused on personalizing an ankle-foot prosthesis using indirect calorimetry feedback. This resulted in a 5.3% and 18.1% reduction in metabolic cost for walking for two individuals with transtibial amputation, compared to the weight-based assistance. The second case study personalized a robotic ankle exoskeleton for three different walking speeds using indirect calorimetry feedback for two subjects. The metabolic cost was reduced by 1%, 2%, and 5.8% for one subject and by 20.8%, 1.9%, and 19% for the other subject, compared to a generic assistance condition for increasing speeds. The third case study personalized gait parameters, specifically step frequency, using an electrocardiogram (ECG)-based cost function along with an optimization algorithm variant, resulting in a 43% reduction in optimization time for one non-disabled subject. These case studies suggest that our personalization framework can effectively personalize wearable robot parameters and potentially enhance assistance benefits.
CITATION STYLE
Kantharaju, P., Vakacherla, S. S., Jacobson, M., Jeong, H., Mevada, M. N., Zhou, X., … Kim, M. (2023). Framework for Personalizing Wearable Devices Using Real-Time Physiological Measures. IEEE Access, 11, 81389–81400. https://doi.org/10.1109/ACCESS.2023.3299873
Mendeley helps you to discover research relevant for your work.