Blood–brain barrier dysfunction in l-ornithine induced acute pancreatitis in rats and the direct effect of l-ornithine on cultured brain endothelial cells

9Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: In severe acute pancreatitis (AP) the CNS is affected manifesting in neurological symptoms. Earlier research from our laboratory showed blood–brain barrier (BBB) permeability elevation in a taurocholate-induced AP model. Here we aimed to further explore BBB changes in AP using a different, non-invasive in vivo model induced by l-ornithine. Our goal was also to identify whether l-ornithine, a cationic amino acid, has a direct effect on brain endothelial cells in vitro contributing to the observed BBB changes. Methods: AP was induced in rats by the intraperitoneal administration of l-ornithine-HCl. Vessel permeability and the gene expression of the primary transporter of l-ornithine, cationic amino acid transporter-1 (Cat-1) in the brain cortex, pancreas, liver and lung were determined. Ultrastructural changes were followed by transmission electron microscopy. The direct effect of l-ornithine was tested on primary rat brain endothelial cells and a triple co-culture model of the BBB. Viability and barrier integrity, including permeability and TEER, nitrogen monoxide (NO) and reactive oxygen species (ROS) production and NF-κB translocation were measured. Fluorescent staining for claudin-5, occludin, ZO-1, β-catenin, cell adhesion molecules Icam-1 and Vcam-1 and mitochondria was performed. Cell surface charge was measured by laser Doppler velocimetry. Results: In the l-ornithine-induced AP model vessel permeability for fluorescein and Cat-1 expression levels were elevated in the brain cortex and pancreas. On the ultrastructural level surface glycocalyx and mitochondrial damage, tight junction and basal membrane alterations, and glial edema were observed. l-ornithine decreased cell impedance and elevated the BBB model permeability in vitro. Discontinuity in the surface glycocalyx labeling and immunostaining of junctional proteins, cytoplasmic redistribution of ZO-1 and β-catenin, and elevation of Vcam-1 expression were measured. ROS production was increased and mitochondrial network was damaged without NF-κB, NO production or mitochondrial membrane potential alterations. Similar ultrastructural changes were seen in l-ornithine treated brain endothelial cells as in vivo. The basal negative zeta potential of brain endothelial cells became more positive after l-ornithine treatment. Conclusion: We demonstrated BBB damage in the l-ornithine-induced rat AP model suggesting a general, AP model independent effect. l-ornithine induced oxidative stress, decreased barrier integrity and altered BBB morphology in a culture BBB model. These data suggest a direct effect of the cationic l-ornithine on brain endothelium. Endothelial surface glycocalyx injury was revealed both in vivo and in vitro, as an additional novel component of the BBB-related pathological changes in AP.

Cite

CITATION STYLE

APA

Walter, F. R., Harazin, A., Tóth, A. E., Veszelka, S., Santa-Maria, A. R., Barna, L., … Deli, M. A. (2022). Blood–brain barrier dysfunction in l-ornithine induced acute pancreatitis in rats and the direct effect of l-ornithine on cultured brain endothelial cells. Fluids and Barriers of the CNS, 19(1). https://doi.org/10.1186/s12987-022-00308-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free