The combination of two stressors, lactation and cold, is suggested to be an excellent model for testing the factors limiting sustained energy intake (SusEI). Limits to SusEI during peak lactation may be imposed peripherally by the capacity of mammary glands to produce milk or may be driven by the ability of animals to dissipate body heat. To distinguish between the two mechanisms, body mass change, food intake, reproductive output (using litter size and mass) and serum prolactin (PRL) levels were measured in striped hamsters lactating at 23, 30 and 5°C. Resting metabolic rate (RMR) during late lactation was also measured. Female hamsters lactating at 5°C showed significantly lower change in body mass, but had higher food intake and RMR than females at 23 and 30°C. Asymptotic food intake averaged 14.6±0.4, 14.5±0.7 and 16.2±0.5 g d-1 for females at 23, 30 and 5°C, respectively. The females at 5°C had 11.4% higher asymptotic food intake than females at 23 and 30°C (F2,51=3.3, P<0.05, Tukey's HSD, P<0.05). No significant differences in litter size and PRL levels were observed between the three groups; however, litter mass at 5°C was lower by 19.7 and 19.8% than litter mass at 23 and 30°C on day 19 of lactation (F2,51=3.5, P<0.05, Tukey's HSD, P<0.05). Differences in the above parameters between 23 and 30°C were not significant. Litter mass was positively correlated with asymptotic food intake (23°C, r=0.60, P<0.05; 30°C, r=0.94, P<0.01; 5°C, r=0.77, P<0.01). These data suggested that females lactating at cold temperatures increased food intake to compensate for additional energy demands for thermogenesis, but they might not be capable of exporting more energy as milk to the pups, indicating a possible consistency with the peripheral hypothesis. However, the present results do not considerably distinguish the peripheral limitation hypothesis from the heat dissipation limits hypothesis.© 2011 Published by The Company of Biologists Ltd.
CITATION STYLE
Zhao, Z. J. (2011). Energy budget during lactation in striped hamsters at different ambient temperatures. Journal of Experimental Biology, 214(6), 988–995. https://doi.org/10.1242/jeb.049395
Mendeley helps you to discover research relevant for your work.