A genetic algorithm approach for prediction of linear dynamical systems

102Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Modelling of linear dynamical systems is very important issue in science and engineering. The modelling process might be achieved by either the application of the governing laws describing the process or by using the input-output data sequence of the process. Most of the modelling algorithms reported in the literature focus on either determining the order or estimating the model parameters. In this paper, the authors present a new method for modelling. Given the input-output data sequence of the model in the absence of any information about the order, the correct order of the model as well as the correct parameters is determined simultaneously using genetic algorithm. The algorithm used in this paper has several advantages; first, it does not use complex mathematical procedures in detecting the order and the parameters; second, it can be used for low as well as high order systems; third, it can be applied to any linear dynamical system including the autoregressive, moving-average, and autoregressive moving-average models; fourth, it determines the order and the parameters in a simultaneous manner with a very high accuracy. Results presented in this paper show the potentiality, the generality, and the superiority of our method as compared with other well-known methods. © 2013 Za'er Abo-Hammour et al.

References Powered by Scopus

Modeling by shortest data description

4485Citations
N/AReaders
Get full text

Fitting autoregressive models for prediction

2122Citations
N/AReaders
Get full text

Statistical predictor identification

1157Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm

481Citations
N/AReaders
Get full text

Optimization solution of Troesch's and Bratu's problems of ordinary type using novel continuous genetic algorithm

201Citations
N/AReaders
Get full text

Image encryption algorithm based on a 2D-CLSS hyperchaotic map using simultaneous permutation and diffusion

139Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Abo-Hammour, Z., Alsmadi, O., Momani, S., & Abu Arqub, O. (2013). A genetic algorithm approach for prediction of linear dynamical systems. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/831657

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

58%

Professor / Associate Prof. 4

33%

Lecturer / Post doc 1

8%

Readers' Discipline

Tooltip

Engineering 5

50%

Computer Science 2

20%

Mathematics 2

20%

Chemical Engineering 1

10%

Save time finding and organizing research with Mendeley

Sign up for free