The corrosion behavior of pure aluminum (Al) in 20 v/v% ethanol-gasoline blends has been studied using electrochemical techniques. Ethanol was obtained from different fruits including sugar cane, oranges, apples, or mangos, whereas other techniques included lineal polarization resistance, electrochemical noise, and electrochemical impedance spectroscopy for 90 days. Results have shown that corrosion rates for Al in all the blends were higher than that obtained in gasoline. In addition, the highest corrosion rate was obtained in the blend containing ethanol obtained from sugar cane. The corrosion process was under charge transfer control in all blends; however, for some exposure times, it was under the adsorption/desorption control of an intermediate compound. Al was susceptible to a localized, plotting type of corrosion in all blends, but they were bigger in size and in number in the blend containing ethanol obtained from sugar cane.
CITATION STYLE
Brito-Franco, A., Uruchurtu, J., Rosales-Cadena, I., Lopez-Sesenes, R., Serna-Barquera, S. A., Hernandez-Perez, J. A., … Gonzalez-Rodriguez, J. G. (2020). Corrosion behavior of al in ethanol-gasoline blends. Energies, 13(21). https://doi.org/10.3390/en13215544
Mendeley helps you to discover research relevant for your work.