Line graphs have been studied for over seventy years. In 1932, H. Whitney showed that for connected graphs, edge-isomorphism implies isomorphism except for K3 and K 1,3. The line graph transformation is one of the most widely studied of all graph transformations. In its long history, the concept has been rediscovered several times, with different names such as derived graph, interchange graph, and edge-to-vertex dual. Line graphs can also be considered as intersection graphs. Several variations and generalizations of line graphs have been proposed and studied. These include the concepts of total graphs, path graphs, and others. In this brief survey we describe these and some more recent generalizations and extensions including super line graphs and triangle graphs. Copyright © 2004 Hindawi Publishing Corporation. All rights reserved.
CITATION STYLE
Bagga, J. (2004). Old and new generalizations of line graphs. International Journal of Mathematics and Mathematical Sciences, 2004(29), 1509–1521. https://doi.org/10.1155/S0161171204310094
Mendeley helps you to discover research relevant for your work.