This studywas a comprehensive analysis of metabolites in plasma and urine specimens from subjects who received probenecid, a potent inhibitor of renal organic anion transporters (OATs). Taurine and glycochenodeoxycholate sulfate (GCDCA-S) could be identified using authentic standards. Probenecid had no effect on the area under the plasma-concentration time curves of taurine and GCDCA-S, whereas it significantly inhibited their urinary excretion in a dose-dependent manner. Probenecid at 500, 750, and 1500 mg orally decreased the renal clearance (CLR) values of taurine and GCDCA-S by 45% and 60%, 59% and 79%, and 70% and 88%, respectively. The CLR values correlated strongly (r > 0.96) between the test compounds (benzylpenicillin, 6b-hydroxycortisol, taurine, and GCDCA-S). Taurine and GCDCA-S were substrates of OAT1 and OAT3, with Km values of 379 ± 58 and 64.3 ± 3.9 μM, respectively. The Ki values of probenecid for the OAT1- and OAT3-mediated uptake of taurine and GCDCA-S (9.49 ± 1.27 and 7.40 ± 0.70 μM, respectively) were similar to those of their typical substrate drugs. The magnitude of the reduction in theCLR of taurine and GCDCA-S by probenecid could be reasonably explained using the geometric mean values of unbound probenecid concentration and Ki values. These results suggest that taurine and GCDCA-S can be used as probes for evaluating pharmacokinetic drug-drug interactions involving OAT1 and OAT3, respectively, in humans.
CITATION STYLE
Tsuruya, Y., Kato, K., Sano, Y., Imamura, Y., Maeda, K., Kumagai, Y., … Kusuhara, H. (2016). Investigation of endogenous compounds applicable to drug-drug interaction studies involving the renal organic anion transporters, OAT1 and OAT3, in humans. Drug Metabolism and Disposition, 44(12), 1825–1933. https://doi.org/10.1124/dmd.116.071472
Mendeley helps you to discover research relevant for your work.