The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy (1993) have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TTP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTPs with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll. © 1995 Psychonomic Society, Inc.
CITATION STYLE
Kaiser, M. K., & Hecht, H. (1995). Time-to-passage judgments in nonconstant optical flow fields. Perception & Psychophysics, 57(6), 817–825. https://doi.org/10.3758/BF03206797
Mendeley helps you to discover research relevant for your work.