Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma

166Citations
Citations of this article
295Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, affecting one in ten people aged over 65 years. Despite the severity of the disease, early diagnosis of AD is still challenging due to the low accuracy or high cost of neuropsychological tests and neuroimaging. Here we report clinically accurate and ultrasensitive detection of multiple AD core biomarkers (t-tau, p-tau181, Aβ42, and Aβ40) in human plasma using densely aligned carbon nanotubes (CNTs). The closely packed and unidirectionally aligned CNT sensor array exhibits high precision, sensitivity, and accuracy, evidenced by a low coefficient of variation (<6%), a femtomolar-level limit of detection, and a high degree of recovery (>93.0%). By measuring the levels of t-tau/Aβ42, p-tau181/Aβ42, and Aβ42/Aβ40 in clinical blood samples, the sensor array successfully discriminates the clinically diagnosed AD patients from healthy controls with an average sensitivity of 90.0%, a selectivity of 90.0%, and an average accuracy of 88.6%.

Cite

CITATION STYLE

APA

Kim, K., Kim, M. J., Kim, D. W., Kim, S. Y., Park, S., & Park, C. B. (2020). Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-13901-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free