Antiviral drug discovery: Norovirus proteases and development of inhibitors

33Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

Abstract

Proteases are a major enzyme group playing important roles in a wide variety of biological processes in life forms ranging from viruses to mammalians. The aberrant activity of proteases can lead to various diseases; consequently, host proteases have been the focus of intense investigation as potential therapeutic targets. A wide range of viruses encode proteases which play an essential role in viral replication and, therefore, constitute attractive targets for the development of antiviral therapeutics. There are numerous examples of successful drug development targeting cellular and viral proteases, including antivirals against human immunodeficiency virus and hepatitis C virus. Most FDA-approved antiviral agents are peptidomimetics and macrocyclic compounds that interact with the active site of a targeted protease. Norovirus proteases are cysteine proteases that contain a chymotrypsin-like fold in their 3D structures. This review focuses on our group’s efforts related to the development of norovirus protease inhibitors as potential anti-norovirus therapeutics. These protease inhibitors are rationally designed transition-state inhibitors encompassing dipeptidyl, tripeptidyl and macrocyclic compounds. Highly effective inhibitors validated in X-ray co-crystallization, enzyme and cell-based assays, as well as an animal model, were generated by launching an optimization campaign utilizing the initial hit compounds. A prodrug approach was also explored to improve the pharmacokinetics (PK) of the identified inhibitors.

Cite

CITATION STYLE

APA

Chang, K. O., Kim, Y., Lovell, S., Rathnayake, A. D., & Groutas, W. C. (2019, February 1). Antiviral drug discovery: Norovirus proteases and development of inhibitors. Viruses. MDPI AG. https://doi.org/10.3390/v11020197

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free