Molybdenum sulfide (MoS2 ) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2 ) and advanced microwave methods (MW-MoS2 ), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.
CITATION STYLE
Solomon, G., Mazzaro, R., Morandi, V., Concina, I., & Vomiero, A. (2020). Microwave-assisted vs. Conventional hydrothermal synthesis of mos2 nanosheets: Application towards hydrogen evolution reaction. Crystals, 10(11), 1–12. https://doi.org/10.3390/cryst10111040
Mendeley helps you to discover research relevant for your work.