Multi-sensors remote sensing applications for assessing, monitoring, and mapping npk content in soil and crops in african agricultural land

24Citations
Citations of this article
102Readers
Mendeley users who have this article in their library.

Abstract

Demand for agricultural products is increasing as population continues to grow in Africa. To attain a higher crop yield while preserving the environment, appropriate management of macronutrients (i.e., nitrogen (N), phosphorus (P) and potassium (K)) and crops are of critical prominence. This paper aims to review the state of art of the use of remote sensing in soil agricultural applications, especially in monitoring NPK availability for widely grown crops in Africa. In this study, we conducted a substantial literature review of the use of airborne imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing spectral information, and advances of these applications in farming practices by the African scientific community. Here we aimed to identify knowledge gaps in this field and challenges related to the acquisition, processing, and analysis of hyperspectral imagery for soil agriculture investigations. To do so, publications over the past 10 years (i.e., 2008–2021) in hyperspectral imaging technology and applications in monitoring macronutrients status for crops were reviewed. In this study, the imaging platforms and sensors, as well as the different methods of processing encountered across the literature, were investigated and their benefit for NPK assessment were highlighted. Furthermore, we identified and selected particular spectral regions, bands, or features that are most sensitive to describe NPK content (both in crop and soil) that allowed to characterize NPK. In this review, we proposed a hyperspectral data-based research protocol to quantify variability of NPK in soil and crop at the field scale for the sake of optimizing fertilizers application. We believe that this review will contribute promoting the adoption of hyperspectral technology (i.e., imaging and spectroscopy) for the optimization of soil NPK investigation, mapping, and monitoring in many African countries.

Cite

CITATION STYLE

APA

Misbah, K., Laamrani, A., Khechba, K., Dhiba, D., & Chehbouni, A. (2022, January 1). Multi-sensors remote sensing applications for assessing, monitoring, and mapping npk content in soil and crops in african agricultural land. Remote Sensing. MDPI. https://doi.org/10.3390/rs14010081

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free