We demonstrated that the liposomes composed of dioleolylphosphatidylethanolamine/cholesterol/oleic acid (4:4:2) dramatically release their contents at a pH of less than or equal to 6.0 and are capable of delivering their contents into the cytoplasm of higher plant protoplasts. This is shown by using a soluble fluorescent dye, calcein, as a liposome-entrapped marker. We found that calcein fluorescence was evenly distributed in the cytoplasm of wild carrot protoplasts after the incubation of protoplasts with liposomes in the presence of polyethylene glycol 6000. At 0.45 micro mole phospholipid per 6 x 10(5) protoplast, for example, the percentage of protoplasts which took up liposomes was 89% which was much higher than that achieved by conventional pH-insensitive liposomes. In this study, liposomes were prepared by a detergent dialysis method which avoided sonication and organic solvents. Thus macromolecules such as proteins and nucleic acids could be entrapped in the liposomes and delivered to the cytoplasm of the protoplasts.
CITATION STYLE
Wang, C.-Y., Hughes, K. W., & Huang, L. (1986). Improved Cytoplasmic Delivery to Plant Protoplasts via pH-Sensitive Liposomes. Plant Physiology, 82(1), 179–184. https://doi.org/10.1104/pp.82.1.179
Mendeley helps you to discover research relevant for your work.