Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency

209Citations
Citations of this article
187Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertz-frequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low electrical-to-mechanical transduction efficiency, and low optomechanical interaction rate. Here we demonstrate an on-chip piezo-optomechanical transducer that systematically addresses all these challenges to achieve nearly three orders of magnitude improvement in conversion efficiency over previous work. Our modulator demonstrates acousto-optic modulation with Vπ = 0.02 V. We show bidirectional conversion efficiency of 1 0 − 5 with 3.3 μW red-detuned optical pump, and 5.5 % with 323 μW blue-detuned pump. Further study of quantum transduction at millikelvin temperatures is required to understand how the efficiency and added noise are affected by reduced mechanical dissipation, thermal conductivity, and thermal capacity.

Cite

CITATION STYLE

APA

Jiang, W., Sarabalis, C. J., Dahmani, Y. D., Patel, R. N., Mayor, F. M., McKenna, T. P., … Safavi-Naeini, A. H. (2020). Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14863-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free