Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: An environmental life cycle and techno-economic assessment of added cooling pathways

17Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.

Abstract

Anaerobic digestion coupled with combined heat and power production on dairy farms is environmentally advantageous; however, high capital and operating costs have limited its adoption, especially in the United States, where renewable electricity and heat production are under-incentivized. Biogas is also at a disadvantage because it has to compete with very low natural gas prices. The objective of this study was to evaluate the feasibility of integrating absorption refrigeration technology for combined cooling, heat, and power (CCHP) on the farm to help bridge this economic hurdle. A combined environmental life cycle and techno-economic assessment was used to compare 2 cooling pathways with and without co-digestion. We considered using CCHP to (1) displace electricity-driven refrigeration processes (e.g., milk chilling/refrigeration, biogas inlet cooling) or (2) mitigate heat stress in dairy cattle via conductive cow cooling. All cooling scenarios reduced environmental emissions compared with combined heat and power only, with an appreciable reduction in land use impacts when employing conductive cow cooling. However, none of the cooling scenarios achieved economically viability. When using cooling power to displace electricity-driven refrigeration processes, economic viability was constrained by low electricity prices and a lack of incentives in the United States. When used for conductive cow cooling, economic viability was constrained by (1) low waste heat-to-cooling conversion efficiency; (2) limited conductive cow cooling effectiveness (i.e., heat-stress mitigation); and (3) low heat stress frequency and limited severity. However, we predict that with minor improvements in conductive cow cooling effectiveness and in hotter climates, CCHP for conductive cow cooling would be economically viable even in current US energy markets.

Cite

CITATION STYLE

APA

Usack, J. G., Van Doren, L. G., Posmanik, R., Tester, J. W., & Angenent, L. T. (2019). Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: An environmental life cycle and techno-economic assessment of added cooling pathways. Journal of Dairy Science, 102(4), 3630–3645. https://doi.org/10.3168/jds.2018-15518

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free