Purpose: The in vivo probing of restricted diffusion effects in large lipid droplets on a clinical MR scanner remains a major challenge due to the need for high b-values and long diffusion times. This work proposes a methodology to probe mean lipid droplet sizes using diffusion-weighted MRS (DW-MRS) at 3T. Methods: An analytical expression for restricted diffusion was used. Simulations were performed to evaluate the noise performance and the influence of particle size distribution. To validate the method, oil-in-water emulsions were prepared and examined using DW-MRS, laser deflection and light microscopy. The tibia bone marrow was scanned in volunteers to test the method repeatability and characterize microstructural differences at different locations. Results: The simulations showed accurate and precise droplet size estimation when a sufficient SNR is reached with minor dependence on the size distribution. In phantoms, a good correlation between the measured droplet sizes by DW-MRS and by laser deflection (R2 = 0.98; P = 0.01) and microscopy (R2 = 0.99; P < 0.01) measurements was obtained. A mean coefficient of variation of 11.5 % was found for the lipid droplet diameter in vivo. The average diameter was smaller at a proximal (50.1 ± 7.3 µm) compared with a distal tibia location (61.1 ± 6.8 µm) (P < 0.01). Conclusion: The presented methods were able to probe restricted diffusion effects in lipid droplets using DW-MRS and to estimate lipid droplet size. The methodology was validated using phantoms and the in vivo feasibility in bone marrow was shown based on a good repeatability and findings in agreement with literature.
CITATION STYLE
Weidlich, D., Honecker, J., Gmach, O., Wu, M., Burgkart, R., Ruschke, S., … Karampinos, D. C. (2019). Measuring large lipid droplet sizes by probing restricted lipid diffusion effects with diffusion-weighted MRS at 3T. Magnetic Resonance in Medicine, 81(6), 3427–3439. https://doi.org/10.1002/mrm.27651
Mendeley helps you to discover research relevant for your work.